logo

尊龙人生就是博旧版现金娱乐手机

张亚勤:深度学习更近一步如何突破香农、冯诺依曼和摩尔瓶颈

分享到:
作者来源: 未知 ????? 发布时间:2024-05-25

  近日,在联想创投 2020 CEO 年会上,清华大学讲席教授、智能产业研究院院长、美国艺术与科学院院士、百度前总裁张亚勤先生带来了《未来科技趋势展望》。

  张亚勤表示,数字化的 3.0 时期已经到来,数字化的范围已从内容、社交和企业服务领域向物理和生物世界进行延伸,将我们熟悉的城市、工厂、电网、家庭向智慧交通、工业互联网、智慧医疗等方向进行升级,为了完成物理世界的「数字化」,数据需要更清晰地让数字世界和现实世界一一对应,通过深度学习,计算机不断加深着对于人类世界的认知。

  随着数据的海量爆发,如何突破目前的算力,成为了一代又一代科学家攻克的关键,香农定律、冯诺依曼架构和摩尔定律奠定了传统计算与通讯范式,如何突破已经接近极限的三种理论?张亚勤表示,需要通过对信息的重新定义,制定新的计算范式、计算体系和通讯架构,而它们又给产业带来了新的机会。为此,中国需要抓住机会,引领数字化的 3.0 时代和第四次工业革命浪潮。

  清华大学讲席教授、智能产业研究院院长、美国艺术与科学院院士、百度前总裁张亚勤发表演讲

  大家下午好!非常高兴能够来到联想创投 CEO 年会,作为中国 IT 的 icon,联想 36 年历经坎坷,也取得很多进展,尤其是联想的「3S」战略,和我今天要讲的内容「智能技术趋势」非常吻合。

  回顾 IT 产业 30 年发展历程,最大的特征就是数字化。第一波数字化开始于 80 年代中期,也是联想成立的时期。围绕自然界的内容表述,数字化的范围包括音乐、视频、声音、图像等,算法和标准有 MP3/4、H.26、AVS 等;随着 PC 的推出,又出现了 PPT、EXCEL、WORD 文档数字化。

  第二波数字化开始于 90 年代中期,在内容数字化的基础上加上互联网、HTDP、HTML 的产生,从而催生消费者互联网,从早期的 PC 网站、门户,到搜索、电商、社交,再到后来的共享经济、Zoom 等视频通讯、数字货币和移动支付。从产品体验和规模等方面来看,中国在移动互联网时代下的消费互联领域整体领先于世界。

  与此同时,企业也在数字化方向不断细化与革新,比如 ERP、CRM、HR、Supply Chain、BI、workflow 等管理系统的诞生。在云领域,中国已在逐步追赶基础设施云的建设,逐渐缩小与其他国家在规模效应上的差距。

  我认为,中国软件的发展跳过了以「软件作为产品」的时代,直接进入以「软件作为服务」的时代。互联网本身就是「软件作为服务」的一种符号,作为一种新软件模式,我认为大量 SaaS 公司会在 5 年之后陆续出现,未来 SaaS 平台会有很大的机会。

  现在,我们进入了数字化 3.0 时期,也即智能感知时代,这个阶段发生了两方面转变:一是物理世界的数字化,我也把它叫做「互联网的物理化」——工厂、电网、机器,乃至所有移动设备、家庭、城市都在向数字化发展。在这个过程中出现了相较于过去上千甚至上万倍的海量数据,比如一辆无人车每天产生的数据量大约 5-10T;相比于数据主要提供给人员辅助决策的 1.0 和 2.0 时代,数字化 3.0 时期 99% 以上数据在机器间传输,到最后一环节才传递给人员。

  第二个方面的转变生物世界的数字化,人们的细胞结构、所有器官乃至整个身体都在数字化,整体数量级比物理世界大上千倍。从虚拟、宏观到微观,整个数字信息世界、物理世界和生物世界正在走向融合。此外,「数字孪生」技术可以让我们更加清晰地将物理世界和生物世界进行一一对应。

  有了大数据之后,我们还要实现数据的结构化和智能化。在人工智能的 60 年发展过程中,有「冬天」也有「春天」。人工智能根据不同算法大致分为两类:一种是逻辑推理,是以知识为驱动的算法;另一种是以大数据为驱动的算法,两者都运用到了人类大脑的基本认识、基本模型和决策模型。

  过去十年里最流行的深度学习,基本是以大数据、大计算、大模型算法来驱动,其中包括 AlphaGO、AlphaZero。深度学习确在过去一段时间取得很好的进展,比如 GAN、Transfer learning,到现在的 GPT-3 等等。未来,深度学习还有很大发展空间,其算法需要结合符号逻辑、知识型推理和更多模型的因果关系和新的范式,目前对于产业来讲,未来五至十年,深度学习还会是最重要的算法。

  根据 Google AI 负责人Jeff dean 的观点,人工智能的三大要素是数据、算法和算力,实际上是数据加上 100 倍的算力,并且算力比数据更重要 100 倍。这个观点我不完全同意,但我同意在目前深度学习框架下,算力十分重要。

  怎么突破目前的算力?过去 60 年,传统计算与通讯范式有三个重要原理:香农定律、冯诺依曼架构和摩尔定律。

  香农定律,定义了熵、信道容量和失真情况下压缩极限,目前,我们距离这三个极限已比较接近。冯诺依曼架构是指五个最基本模块加上程序存储原理,是图灵意义下最好的一种实现,但它的瓶颈在于数据和计算的分离。在深度学习中,庞大数据量本身就会形成一个瓶颈。最后还有摩尔定律的限制。

  首先,我们需要对信息做一个重新的定义,制定新的计算范式。另外,进入互联网时代,香农理论从点对点通讯延伸到多用户信息论,但真正的理论框架并没有太大进步,所以需要更多理论层面的模型更新,否则深度学习就很难引入因果关系和模型。

  目前,图像视频编码技术的发展已经达到性能极限,如何用 AI 彻底、大幅度地进行改善也需要我们的思考。

  此外,还需要新计算体系和通讯架构,创新传感器类型。传感器能够获取各种各样的数据,所以非常重要。有观点认为,人用「小数据」就可以做决策,但我认为大数据是机器的优势,虽在决策方面与人相比稍有欠缺,但在获取各种不同数据时比人更有优势。

  同时,需要新模态。深度学习需要的 Tensor Products、线性代数、布尔代数等要素在传统的冯诺依曼架构下不易实现,通过研发 GPU、ASIC 等技术加速并彻底形成新架构成为了大趋势。除了传统的英特尔、AMD,谷歌、百度、地平线、寒武纪等公司也在做这件事,在新架构产生之后,就会随之产生更多新算法、新模型、新型芯片,这将是一个非常大的机会。

  这是一个我在百度启动的项目:昆仑芯片,这是一个大型芯片,主要用于大型训练,已经在百度部署。第一代昆仑芯片能在 150 瓦的功率下实现 260 TOPS 的处理能力。第二代昆仑芯片采用 7nm 先进工艺,相对于第一代芯片而言,性能提高了 3 倍。

  计算、通讯、新架构、新算法,它们给产业带来的新机遇,就像联想的「3S 战略」,在 IT 行业不断升级的背景下,为整个产业带来了新机遇甚至是颠覆性的改变。

  抓住新的行业机遇,我们正在面临第四次工业革命,如果说前三次工业革命中国是旁观者,但在这一次,中国有机会在很多方面成为引领者。

  面向第四次工业革命,我们希望能够打造成一个国际化、智能化和产业化的智能产业研究院(AIR)。我们有三个方式达到这个目标:最重要的是吸引一流人才,特别是担任过 CTO、研究院院长的人才,另外还要有深厚的学术背景和丰富的企业经验;其次,研究院还要培养目前我们还比较缺乏的、具备深度大系统思维能力和顶层设计能力的 CTO 和顶级架构师;最后,我们要打造核心技术并逐步将其发展为公司。

  目前,我们刚刚起步,除我之外,还有两位联合合伙人,一位是马维英博士,他是电气电子工程师学会院士,字节跳动副总裁、人工智能实验室主任,也是微软亚洲研究院前常务副院长;另一位是赵峰博士,他也是电气电子工程师学会院士,还是前海尔集团 CTO、副总裁,全球 loT 教科书编写者。这两位联合合伙人非常符合我刚才的描述,不仅发表很多学术文章,同时又有丰富的产业经验。

  我们聚焦于三个研究领域:智慧交通、工业互联网、智慧医疗。我认为,智慧交通能够为整个社会和产业带来巨大的影响,作为未来 5-10 年最有挑战的技术,无人驾驶还能够通过狭义的人工智能解决自身的难题。我们还聚焦工业互联网、IoT、智能感知,因为它们是数字世界和物理世界的接口;在我们看来,AI 在未来十年还可以深层次地改变整个医疗健康产业,不局限于 AI 机器人针对病人和医护人员的协助性工作,还包括制药、蛋白质结构预测等,实现以上三领域的发展都需要基础设施「ABCD」,即 AI、Big Data、Cloud、Device,以及学者对基础科学研究的支持。

  在 AIR,我们采用完全开放的模式,希望和整个产业有多种形式的合作,比如联合实验室、联合科研项目、共同孵化项目,我们也希望能够通过这个机会认识更多创业者,让大家更了解 AIR,大家齐力构建更大的生态圈。香农理论异质外延网络电视雷达方程尊龙人生就是博旧版现金娱乐手机

生产实力 解决方案 联系我们
Copyright 2017 尊龙人生就是博旧版现金娱乐手机 All Rights Reserved